Brunel University London
Browse
.XLSX
Model-input.xlsx (156.82 kB)
.XLSX
Model-outputs.xlsx (104.67 kB)
TEXT
Draw_Figures.m (14.3 kB)
.XLSX
Feed-Matlab.xlsx (104.66 kB)
.EPS
Fig 3.eps (4.48 MB)
.EPS
Fig 4.eps (4.62 MB)
.EPS
Fig 5.eps (4.48 MB)
.EPS
Fig 6.eps (6.71 MB)
.FIG
Fig 3 a.fig (50.4 kB)
.FIG
Fig 3 b.fig (50.34 kB)
.FIG
Fig 3 c.fig (50.38 kB)
.FIG
Fig 4 a.fig (51.28 kB)
.FIG
Fig 4 b.fig (51.63 kB)
.FIG
Fig 4 c.fig (51.88 kB)
.FIG
Fig 5 a.fig (51.33 kB)
.FIG
Fig 5 b.fig (50.67 kB)
.FIG
Fig 5 c.fig (51.49 kB)
.FIG
Fig 6 a.fig (61.32 kB)
.FIG
Fig 6 b.fig (60.99 kB)
.FIG
Fig 6 c.fig (65.68 kB)
1/0
20 files

Intelligent Solubility estimation of Gaseous Hydrocarbons in Ionic Liquids

dataset
posted on 2023-09-12, 09:16 authored by Behnaz Basirat, Fariborz ShaahmadiFariborz Shaahmadi, Seyed Sorosh Mirfasihi, Abolfazl Jomekian, Bahamin BazooyarBahamin Bazooyar

This research includes technical data for solubility of gaseous hydrocarbons in ionic liquids. This work shows how artificial intelligence can be used in chemical industry and solubility estimation of simple to large and complex long hydrocarbon molecular chains in ionic liquids.

History

Usage metrics

    Brunel University London

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC