: Public Class
Created: 07/05/2009 15:06:53
Modified: 25/08/2012 19:49:42
Project:
Advanced:
IEEE steam turbine governor model.<br/><br/>Ref<font color="#0f0f0f">erence: IEEE Transactions on Power Apparatus and Systems</font><br/><font color="#0f0f0f">November/December 1973, Volume PAS-92, Number 6</font><br/><font color="#0f0f0f"><i><u>Dynamic Models for Steam and Hydro Turbines in Power System Studies</u></i>, Page 1904.</font><br/><br/><b>Parameter Notes:</b><br/><ol>
<li>Per unit parameters are on base of <b>MWbase</b>, which is normally the MW capability of the turbine.</li><li><b>T3</b> must be greater than zero.  All other time constants may be zero.</li><li>For a tandem-compound turbine the parameters <b>K2</b>, <b>K4</b>, <b>K6</b>, and <b>K8</b> are ignored. For a cross-compound turbine, two generators are connected to this turbine-governor model.</li><li>Each generator must be represented in the load flow by data on its own MVA base.  The values of <b>K1</b>, <b>K3</b>, <b>K5</b>, <b>K7</b> must be specified to describe the proportionate development of power on the first turbine shaft.  <b>K2</b>, <b>K4</b>, <b>K6</b>, <b>K8</b> must describe the second turbine shaft. Normally <b>K1</b> + <b>K3</b> + <b>K5</b> + <b>K7</b> = 1.0 and <b>K2</b> + <b>K4</b> + <b>K6</b> + <b>K8</b> = 1.0  (if second generator is present).</li><li>The division of power between the two shafts is in proportion to the values of MVA bases of the two generators.  The initial condition load flow should, therefore, have the two generators loaded to the same fraction of each one’s MVA base.</li></ol><p/>
Attribute
Public PU
  k
Details:
Notes: Governor gain (reciprocal of droop) (K) (#gt; 0).  Typical Value = 25.<br/>
Public Float
  k1
Details:
Notes: Fraction of HP shaft power after first boiler pass (K1).  Typical Value = 0.2.<br/>
Public Float
  k2
Details:
Notes: Fraction of LP shaft power after first boiler pass (K2).  Typical Value = 0.<br/>
Public Float
  k3
Details:
Notes: Fraction of HP shaft power after second boiler pass (K3).  Typical Value = 0.3.<br/>
Public Float
  k4
Details:
Notes: Fraction of LP shaft power after second boiler pass (K4).  Typical Value = 0.<br/>
Public Float
  k5
Details:
Notes: Fraction of HP shaft power after third boiler pass (K5).  Typical Value = 0.5.<br/>
Public Float
  k6
Details:
Notes: Fraction of LP shaft power after third boiler pass (K6).  Typical Value = 0.<br/>
Public Float
  k7
Details:
Notes: Fraction of HP shaft power after fourth boiler pass (K7).  Typical Value = 0.<br/>
Public Float
  k8
Details:
Notes: Fraction of LP shaft power after fourth boiler pass (K8).  Typical Value = 0.<br/>
Public ActivePower
  mwbase
Details:
Notes: Base for power values (MWbase) (#gt; 0)<i>.</i><br/>
Public PU
  pmax
Details:
Notes: Maximum valve opening (Pmax) (#gt; Pmin).  Typical Value = 1.<br/>
Public PU
  pmin
Details:
Notes: Minimum valve opening (Pmin) (#gt;= 0).  Typical Value = 0.<br/>
Public Seconds
  t1
Details:
Notes: Governor lag time constant (T1).  Typical Value = 0.<br/>
Public Seconds
  t2
Details:
Notes: Governor lead time constant (T2).  Typical Value = 0.<br/>
Public Seconds
  t3
Details:
Notes: Valve positioner time constant (T3) (#gt; 0).  Typical Value = 0.1.<br/>
Public Seconds
  t4
Details:
Notes: Inlet piping/steam bowl time constant (T4).  Typical Value = 0.3.<br/>
Public Seconds
  t5
Details:
Notes: Time constant of second boiler pass (T5).  Typical Value = 5.<br/>
Public Seconds
  t6
Details:
Notes: Time constant of third boiler pass (T6).  Typical Value = 0.5.<br/>
Public Seconds
  t7
Details:
Notes: Time constant of fourth boiler pass (T7).  Typical Value = 0.<br/>
Public Float
  uc
Details:
Notes: Maximum valve closing velocity (Uc) (#lt; 0).  Unit = PU/sec.  Typical Value = -10.<br/>
Public Float
  uo
Details:
Notes: Maximum valve opening velocity (Uo) (#gt; 0).  Unit = PU/sec.  Typical Value = 1.<br/>
Object Type Connection Direction Notes
TurbineGovernorDynamics Class Generalization To