: Public Class
Created: 02/02/2012 21:42:36
Modified: 23/04/2012 09:23:35
Project:
Advanced:
The class represents IEEE Std 421.5-2005 type AC8B model. This model represents a PID voltage regulator with either a brushless exciter or dc exciter. The AVR in this model consists of PID control, with separate constants for the proportional (<b>K</b><b><sub>PR</sub></b>), integral (<b>K</b><b><sub>IR</sub></b>), and derivative (<b>K</b><b><sub>DR</sub></b>) gains. The representation of the brushless exciter (<b>T</b><b><sub>E</sub></b>, <b>K</b><b><sub>E</sub></b>, <b>S</b><b><sub>E</sub></b>, <b>K</b><b><sub>C</sub></b>, <b>K</b><b><sub>D</sub></b>) is similar to the model Type AC2A. The Type AC8B model can be used to represent static voltage regulators applied to brushless excitation systems. Digitally based voltage regulators feeding dc rotating main exciters can be represented with the AC Type AC8B model with the parameters <b>K</b><b><sub>C</sub></b> and <b>K</b><b><sub>D</sub></b> set to 0.  For thyristor power stages fed from the generator terminals, the limits <b>V</b><b><sub>RMAX</sub></b> and <b>V</b><b><sub>RMIN</sub></b> should be a function of terminal voltage: <b>V</b><b><sub>T</sub></b> * <b>V</b><b><sub>RMAX</sub></b><sub> </sub>and <b>V</b><b><sub>T</sub></b> * <b>V</b><b><sub>RMIN</sub></b>.<br/>  <br/><br/>Reference: IEEE Standard 421.5-2005 Section 6.8. <br/>
Attribute
Public PU
  ka
Details:
Notes: Voltage regulator gain (K<sub>A</sub>).  Typical Value = 1.<br/>
Public PU
  kc
Details:
Notes: Rectifier loading factor proportional to commutating reactance (K<sub>C</sub>). Typical Value = 0.55.<br/>
Public PU
  kd
Details:
Notes: Demagnetizing factor, a function of exciter alternator reactances (K<sub>D</sub>).    Typical Value = 1.1.<br/>
Public PU
  kdr
Details:
Notes: Voltage regulator derivative gain (K<sub>DR</sub>).  Typical Value = 10.<br/>
Public PU
  ke
Details:
Notes: Exciter constant related to self-excited field (K<sub>E</sub>).  Typical Value = 1.<br/>
Public PU
  kir
Details:
Notes: Voltage regulator integral gain (K<sub>IR</sub>).  Typical Value = 5.<br/>
Public PU
  kpr
Details:
Notes: Voltage regulator proportional gain (K<sub>PR</sub>).  Typical Value = 80.<br/>
Public Float
  seve1
Details:
Notes: Exciter saturation function value at the corresponding exciter voltage, V<sub>E1</sub>, back of commutating reactance (S<sub>E</sub>[V<sub>E1</sub>]).  Typical Value = 0.3.<br/>
Public Float
  seve2
Details:
Notes: Exciter saturation function value at the corresponding exciter voltage, V<sub>E2</sub>, back of commutating reactance (S<sub>E</sub>[V<sub>E2</sub>]).  Typical Value = 3.<br/>
Public Seconds
  ta
Details:
Notes: Voltage regulator time constant (T<sub>A</sub>).  Typical Value = 0.<br/>
Public Seconds
  tdr
Details:
Notes: Lag time constant (T<sub>DR</sub>).  Typical Value = 0.1.<br/>
Public Seconds
  te
Details:
Notes: Exciter time constant, integration rate associated with exciter control (T<sub>E</sub>).  Typical Value = 1.2.<br/>
Public PU
  ve1
Details:
Notes: Exciter alternator output voltages back of commutating reactance at which saturation is defined (V<sub>E1</sub>) equals V<sub>EMAX</sub> (V<sub>E1</sub>).  Typical Value = 6.5.<br/>
Public PU
  ve2
Details:
Notes: Exciter alternator output voltages back of commutating reactance at which saturation is defined (V<sub>E2</sub>).  Typical Value = 9.<br/>
Public PU
  vemin
Details:
Notes: Minimum exciter voltage output (V<sub>EMIN</sub>).  Typical Value = 0.<br/>
Public PU
  vfemax
Details:
Notes: Exciter field current limit reference (V<sub>FEMAX</sub>).  Typical Value = 6.<br/>
Public PU
  vrmax
Details:
Notes: Maximum voltage regulator output (V<sub>RMAX</sub>).  Typical Value = 35.<br/>
Public PU
  vrmin
Details:
Notes: Minimum voltage regulator output (V<sub>RMIN</sub>).  Typical Value = 0.<br/>
Object Type Connection Direction Notes
ExcitationSystemDynamics Class Generalization To